Управление знаниями организации и большие языковые модели Российский журнал менеджмента

Вместе с дата-сайентистом и биоинформатиком Марией Дьяковой подготовили гайд о том, как устроены самые популярные языковые модели и что нужно https://research.ibm.com/artificial-intelligence знать, чтобы начать с ними работать. Если обучить модель на больших массивах медицинских данных, она способна анализировать и интерпретировать сложную медицинскую информацию, складывая в одну картину множество фактов из анамнеза пациента. Представленный в Таблице 1 список на данный момент не является исчерпывающим, поскольку число сторонних плагинов уверенно растет, ведь каждый разработчик заинтересован в выполнения задач, специфичных для своей конкретной работы. Эти платформы обеспечивают демократичный доступ к передовым инструментам искусственного интеллекта и способствуют созданию экосистемы сотрудничества, ускоряющей инновации. Если раньше создание и использование языковых моделей было доступно только крупным технологическим компаниям, то теперь, благодаря открытым моделям и облачным сервисам, разработчики любого уровня могут интегрировать ИИ в свои проекты. Тенденция к увеличению контекстного окна продолжится, но более важным станет качественное улучшение работы с информацией. Будущие модели смогут не просто обрабатывать большие объемы текста, но и эффективно структурировать знания, формировать долговременные связи и обновлять свою базу знаний без https://eleuther.ai полного переобучения.

Добавить комментарийОтменить ответ


Компании, которые работают с большим объемом текстовых данных, всегда ищут пути автоматизации процессов. К таким организациям относятся банки, страховые компании, IT-компании, PR-агентства. Им нужны программы, которые умеют генерировать контент, анализировать тексты, делать машинный перевод, отвечать на запросы клиентов в чатах. В этой статье мы поговорим об одной из технологий, которая помогает компаниям упростить рутинные задач. Помимо создания текста, LLM могут выполнять различные задачи, такие как перевод, обобщение, анализ данных и ответы на вопросы.

MiniMax-01: открытая языковая модель с Lightning Attention лидирует на бенчмарках с контекстом 4M

Помимо прочего, в базы данных вошли речевые клише, стереотипы, мемы, цитаты, фразеологизмы, пословицы и поговорки. Например, выражение «быть в ресурсе», которое часто ассоциируется с духовными практиками. Или термин «единорог», обозначающий компанию, достигшую оценки в 1 млрд долларов в течение десяти лет с момента основания (его добавили в тематическую карту карьериста). По мнению младшего научного сотрудника Центра междисциплинарных исследований МФТИ Ксении Клоковой, сегодня люди проявляют слишком много доверия по отношению к нейросетям. Claude представлена в марте 2023 года и ознаменовала собой выход Anthropic на рынок общедоступных моделей ИИ, направленных на повышение безопасности и этичности ИИ. Claude появился как ответ на непредсказуемые, ненадежные и непрозрачные проблемы больших систем ИИ. Альтман делает акцент на мультимодальности, объединяющей речь, изображения и, в конечном счете, видео, чтобы удовлетворить растущий спрос на универсальное взаимодействие ИИ.

Подробный гайд по большим языковым моделям: ChatGPT, Claude, Gemini, LLama


Одну и ту же модель можно использовать и для генерации кода, и для имитации живого диалога или придумывания историй. Первые языковые модели появились еще в 1990-х годах и могли работать только над лексическим переводом, выравниванием порядка слов в предложениях и другими относительно несложными задачами. Работа над полноценными LLM началась в начале 2010-х годов, когда нейронные сети хорошо зарекомендовали себя в работе с изображениями. https://auslander.expert/ai-content-riski-resheniya/ В настоящее время интерес представляют новые техники управления поведением больших языковых моделей с целью получения желаемого пользователем результата без обновления самих моделей – так называемый «промт инжиниринг». Эта библиотека, использующая различные архитектуры LLM, стала одним из самых быстрорастущих проектов с открытым исходным кодом в этой области. Hugging Face, часто называемый GitHub-ом для больших языковых моделей (LLM), способствует созданию открытой экосистемы для LLM.